4.1: First Order Systems and Applications

Example 1.

Equilibrium positions

Consider the system of two masses and two springs shown above left, with an external force $f(t)$ acting on the right mass m_{2}. Applying Newton's law of motion to the two "free body diagrams" shown top right, we obtain the system

$$
\begin{aligned}
& m_{1} x^{\prime \prime}=-k_{1} x+k_{2}(y-x) \\
& m_{2} y^{\prime \prime}=-k_{2}(y-x)+f(t) .
\end{aligned}
$$

If, for instance, $m_{1}=2, m_{2}=1, k_{1}=4$ and $f(t)=40 \sin 3 t$ then we arrive at

$$
\begin{aligned}
2 x^{\prime \prime} & =-6 x+2 y \\
y^{\prime \prime} & =2 x-2 y+40 \sin 3 t .
\end{aligned}
$$

Example 2.

Consider two brine tanks (shown left). Tank 1 contains $x(t)$ pounds of salt in 100 gal of brine and tank 2 contains $y(t)$ pounds of salt in 200 gal of brine. Everything is kept uniform by stirring as tank 1 receives $20 \mathrm{gal} / \mathrm{min}$ of fresh water and tank 2 flows out at $20 \mathrm{gal} / \mathrm{min}$. Computing the rate of change of salt in each tank, we arrive at

$$
\begin{aligned}
x^{\prime} & =-30 \cdot \frac{x}{100}+10 \cdot \frac{y}{200} \\
y^{\prime} & =30 \cdot \frac{x}{100}-10 \cdot \frac{y}{200}-20 \cdot \frac{y}{200} .
\end{aligned}
$$

In this section we wish to only consider first-order systems. In order to do this, we will change higher-order systems into first-order systems.

Example 3. Rewrite the third-order system

$$
x^{(3)}+3 x^{\prime \prime}+2 x^{\prime}-5 x=\sin 2 t
$$

as an equivalent first-order system of equations.

Example 4. Rewrite the second-order system

$$
\begin{aligned}
2 x^{\prime \prime} & =-6 x+2 y \\
y^{\prime \prime} & =2 x-2 y+40 \sin 3 t
\end{aligned}
$$

as an equivalent first-order system of equations.

Example 5. Solve the two-dimensional system

$$
x^{\prime}=-2 y, \quad y^{\prime}=\frac{1}{2} x .
$$

6. Find the general solution of the system

$$
x^{\prime}=y, \quad y^{\prime}=2 x+y .
$$

Example 7. Solve the initial value problem

$$
\begin{array}{r}
x^{\prime}=-y, \\
y^{\prime}=(1.01) x-(0.2) y, \\
x(0)=0, \quad y(0)=1
\end{array}
$$

Theorem 1. (Existence and Uniqueness for Linear Systems)
Suppose that the functions $p_{11}, p_{12}, \ldots, p_{n n}$ and the functions f_{1}, \ldots, f_{n} are continuous on the open interval I containing a. Then, given the n numbers b_{1}, \ldots, b_{n}, the linear system has a unique solution on the entire interval I that satisfies the n initial conditions

$$
x_{1}(a)=b_{1}, \quad \cdots, \quad x_{n}(a)=b_{n} .
$$

Homework. 1-7, 17-25 (odd)

